
20
21

 I
nt

er
na

tio
na

l C
on

fe
re

nc
e

on
 A

rt
ifi

ci
a

l I
nt

el
lig

en
ce

 in
 In

fo
rm

at
io

n
an

d
C

om
m

un
ic

at
io

n
(I

C
A

IIC
)

| 9
78

-1
-7

28
1-

76
38

-3
/2

0/
$3

1.
00

 ©
20

21
 I

E
E

E
 |

D
O

I:
10

.1
10

9/
IC

A
IIC

51
45

9.
20

21
.9

41
52

51

Juris2vec: Building Word Embeddings from
Philippine Jurisprudence

Elmer Peramo
Advanced Science and Technology

Institute (ASTI)
Department of Science and Technology

(DOST)
Quezon City, Philippines
elmer@asti.dost.gov.ph

Charibeth Cheng
College of Computer Studies

De La Salle University
Manila, Philippines

charibeth.cheng@dlsu.edu.ph

Macario Cordel II
College of Computer Studies

De La Salle University
Manila, Philippines

macario. cordel@dlsu. edu.ph

Abstract— In this research, we trained nine word embedding
models on a large corpus containing Philippine Supreme Court
decisions, resolutions, and opinions from 1901 through 2020. We
evaluated their performance in terms of accuracy on a
customized 4,510-question word analogy test set in seven
syntactic and semantic categories. Word2vec models fared
better on semantic evaluators while fastText models were more
impressive on syntactic evaluators. We also compared our word
vector models to another trained on a large legal corpus from
other countries.

Keywords— natural language processing, word embeddings,
word2vec, gloVe, fastText, intrinsic evaluation

I. In t r o d u c t io n

A. Background

As in any other applications of machine learning, certain
properties or features of data are represented as sets of
numbers or vectors to facilitate further processing and
analytics. Text in natural language processing (NLP) is no
different, and the process of converting text into an ordered set
of numbers is called text vectorization. One such
representation is called one-hot encoding where each word is
represented by a long but sparse vector containing a value of
one in one spot and the rest are zeroes. That spot reflects the
position of that word in a certain dictionary containing all the
unique words taken from a corpus. Effectively, the length of
the one-hot encoded vector is the same as the number of
elements in that dictionary. Another method of representing a
word is by counting how frequent it appears in a certain
document resulting in what is called a term frequency (tf)
vector. However, some words in the English language appear
very commonly but do not contain a lot of information like the
words the, of, and it. Because of this, tf-idf was formulated to
give weights to important words in a document [1]. It is a
statistical measure that factors in not just the term frequency
but also the inverse document frequency. One-hot encoding
and tf-idf are very common text representation techniques in
NLP applications like sentiment analysis, classification,
information retrieval, and topic modeling.

But perhaps as a result of the rapid growth of deep learning
technology, word embeddings became one of the innovations
in natural language processing. They are mappings of text to
a vector space. Each piece of text or token (usually a word)
are converted into a dense vector embedded in a dimension
lower than what they would be i f represented using the
traditional one-hot encoding. Unlike the one-hot encoding
representation of a word, which cannot encapsulate the
similarity between words, they somewhat magically capture
not just syntactic relations but also semantic associations of
words. Word embeddings are sometimes called distributed
representation.

Machine learning algorithms such as singular value
decomposition and neural networks are commonly used to
compute real-number values for each resulting vector in word
embeddings. They can be automatically learned without the
need for supervised learning or labeling. A ll that is needed are
a large corpus, machine learning algorithms coded in a
programming language, and a GPU-enabled machine.

Arguably, the three most popular word embeddings are
word2vec, gloVe, and fastText, which we utilized in this
research.

Word2vec generates word vectors by training a shallow
neural network (two layers) where one-hot encoded vectors of
size V (the length of the vocabulary) are fed into the input
layer, which are linearly transformed to h intermediate nodes
(dimensions). Then, a second fully-connected layer projects
the //-dimensional vector into Voutput neurons in order to map
the input word in a corresponding word presented in the same
window. The output vectors are then converted into
probability vectors using and efficient implementation of the
softmax function. Two popular implementations of Word2vec
are the continuous bag-of-words (CBOW) and the skip-gram
model. The CBOW model tries to predict the target word (or
the center word) based on the word in the context window,
while the skip-gram model does the opposite by predicting the
context words given the target word [2],

978-1-7281-7638-3/21/$31.00 ©2021 IEEE 121 ICAIIC 2021
Authorized licensed use limited to: Cornell University Library. Downloaded on May 24,2021 at 03:16:27 UTC from IEEE Xplore. Restrictions apply.

Glo Ve uses global (corpus-wide) statistical information in
the form of a co-occurrence matrix [3], Given a context
window of size x, the number of times two words co-occur at
that point in time is tallied in a term co-occurrence matrix. The
logarithms of the counts are computed, and entries with zero
values are removed. This large matrix containing the
logarithm of the co-occurrence counts is then factorized using
singular value decomposition (SVD) and applied a weighting
function to relax the effect of extremely common or extremely
rare co-occurrences. GloVe uses a weighted least squares
optimization model in coming up with the optimal parameters.

A more recently introduced fastText model makes use of
the subword information. The algorithm is basically the same
as the skip-gram version of word2vec, except that it breaks
down a word into character «-grams and compute a vector
representation of each character «-grams using the word2vec
algorithm. Ultimately, the vector representation of the word is
computed as the sum of the vector representations of the
character «-grams comprising that word [4],

The succeeding paragraphs discussed the problem
statement, significance, objectives, the scope and delimitation
of this research. Section II provides a discussion of some
related literature including how this research is differentiated
from or is complemented with these works. Section III
characterizes the dataset and the processing involve in
preparation for the model training. In this paper, we utilized
three implementations of each of the above-mentioned
algorithms. Section IV discusses the methodology, models,
architectures, and hyperparameters used in the experiment
including metrics for evaluation. Sections V discusses the
results. Lastly, the conclusion and future work are discussed
in Section VI.

B. Problem Statement

Reducing the backlog of cases in trial courts has long been
the problem of the Philippine judiciary for so many years now.
Automating some administrative processes would somehow
accelerate the reduction of these cases. Automation will
involve digitization of these documents, but currently, most of
the documents being used in the Philippine legal system have
not yet been digitized. And if they were, they are mostly stored
or archived in some sort of monolithic and siloed systems. For
these digitized documents, a powerful text representation
would facilitate intelligent information retrieval, document
classification, and deeper conceptual understanding. Properly
trained word embeddings on legal documents can provide
efficiency in eliciting clarity and unequivocality of concepts
in these documents, thereby helping lawyers craft better
strategy and judges come up with prudent decisions. As far as
the researcher knows, there are no publicly available word
embeddings trained on large legal corpora in the Philippines.
Applying AI, deep learning, and natural language processing
with the law w ill generally strengthen legal research, such that
automated analysis based on the words and phrases (including
their context) relations from laws and jurisprudence will be
applied to ‘teach’ the computer system to predict or suggest
outcomes of new cases, among other use cases. Word
embedding generation is just the start, but this w ill lay the
foundation for a more sophisticated natural language
processing technique later.

C. Objectives

It is the hope of this research to improve information
extraction and retrieval techniques in the judiciary and

advance legal research in the country. Specifically, we aim to
leverage the available data on Philippine jurisprudence and
come up with 300-dimensional word embeddings that would
be able to capture relationships between legal terms, elicit
insight from various visualizations of the generated
embeddings, potentially reveal semantic shifts in some legal
words over time and bias (gender, racial, etc.) in the data
source. We would also create a comprehensive list of word
analogy test to intrinsically evaluate the performance of the
generated embeddings.

D. Significance o f the Study

Language is paramount to the study of law. Understanding
the meaning and interpretations of its components can play a
significant role in advancing the field of legal research at an
accelerated pace comparable to how deep learning has made
remarkable headway in the area of computer vision. These
word embeddings—and the meaning embedded within the
distribution of weights—have been employed extensively in
computer science applications. But for legal domain, they can
potentially give way to practical applications like legal
document classification, information retrieval, word/phrase
analogy, translation (e.g., language translation and
paraphrasing of text in legalese into layman's language),
question-answering, and legal case/briefs automatic
summarization.

This could help judges and legal scholars have a deeper
understanding and interpretation of jurisprudence. It could
provide social scientists and historians insights into the
temporal evolution of word meanings in the Philippine legal
context.

This is an active research area in NLP with cascades of
extensions and variation. Among the promising avenues of
future research in this direction include exploring the temporal
evolution of certain words in the embedding, debiasing
techniques, dealing with polysemous words, and generating
specific dictionaries of ideologies or schools of thoughts in
judicial opinions.

E. Scope and Delimitation

We limited our corpus to the Supreme court decisions
from 1901 to 2020 only and did not include legislation,
executive orders, and the constitution. There are still no
perfect evaluation methods testing the quality of the generated
word vectors for linguistic relationships because it is difficult
to understand exactly how the embedding spaces encode
linguistic relations. In this case, intrinsic evaluations will
exclude out-of-vocabulary (0 0 V) words.

II. RELATED WORK

Generic pre-trained word vectors based on word2vec,
gloVe or fastText algorithms abound but most of them were
trained on conventional encyclopedic corpora like Wikipedia
and online articles, and news stories.

As of late, numerous specific-domain embeddings have
been explored. The researchers were motivated and inspired
by potentially impactful findings from these domain-specific
embeddings that can capture rich properties of concepts and
relationships among terminologies:

Tshitoyan et al. trained an unsupervised model from
materials science knowledge bases present in the published
literature. They were able to efficiently encode chemical
information as dense word embeddings. Without any explicit

122
Authorized licensed use limited to: Cornell University Library. Downloaded on May 24,2021 at 03:16:27 UTC from IEEE Xplore. Restrictions apply.

inclusion of knowledge chemical properties, these
embeddings capture complex materials science concepts such
as the underlying structure of the periodic table and structure-
property relationships in matters. They were able to show that
an unsupervised method and a large collection of chemistry
information-rich documents can recommend materials for
functional applications several years before their discovery
[5]. ' '

Risch and Krestel used the power of word embeddings to
examine the novelty of patent applications using automatic
classification. The authors trained their model on more than
five million patent documents [6],

Zhang et al., created BioWordVec, a distributed word
representation that provided an essential foundation for
biomedical natural language processing (BioNLP), text
mining, and information retrieval. It is an open collection of
biomedical word vectors/embeddings that combines subword
information from unlabeled biomedical text using a widely
used biomedical controlled vocabulary called Medical Subject
Headings (MeSH). They have also assessed both the validity
and the utility of their generated word embeddings over
multiple NLP tasks in the biomedical domain [7],

Law2Vec is a legal word embedding created by Chalkidis
(2018) containing a large number of legal corpora from
various public legal documents in English. The collection
comprises the following number of documents: 53, 000 UK
legislation (e.g. UK Public General Acts, Local Acts, etc.);
62,000 European legislation (e.g. EU Treaties, Regulations,
Directives, etc.) published in Eur-Lex; 5,500 Canadian
legislation (e.g. Consolidated Acts, Constitutional
Documents, etc.); 1,150 Australian legislation; 800 English-
translated legislation from EU countries (e.g. Finland,
Sweden, France, Germany, etc.); 780 English-translated
Legislation from Japanese; 68 bound volumes of the US
Supreme Court decisions from 1998 to 2017; and 54 titles of
the most recently updated U.S. Code [8],

Figure 1. Visualization of some words in (Law2Vec)

Figure 2. Visualization of some words in Juris2vec

Overall, the corpus includes in total 123,066 documents
which consist of 492M individual words (tokens) and trained
word2vec models to generate the word vectors. He trained two
individual word2vec models for 100-dimensional and 200­
dimensional embeddings using the gensim library. So far, this
is the most relevant work that we can compare our results
with. Figures 1 and 2 below show a visualization of how our
model compare with the work of Chalkidis. Juris2vec's 300­
dimensional word vectors and law2vec's 200-dimensional
word vectors were reduced to two dimensions using principal
component analysis (PCA) and plotted on a coordinate
system.

Law2vec's corpus was more diverse, but it was trained
only on 200-dimensional embedding space and using
word2vec. Juris2vec, on the other hand, concentrates on
jurisprudence documents, an exhaustive collection of supreme
court decisions in the Philippines spanning more than a
century. Juris2vec also made use of more sophisticated
algorithms like gloVe and fastText, besides word2vec.

III. THE DATASET

The Philippine Jurisprudence is a collection of text
containing Supreme Court decisions, resolutions, and
opinions on cases escalated from the lower courts. They are
written mostly in the English language, but there are
occasional texts in Filipino and Spanish. Obviously, the body
of text is also replete with legal jargons, which are mostly in
Latin. The original documents from the Supreme Court were
converted into an image using optical character recognition
(OCR) for archiving purposes. Organizations like Arellano
University School of Law (lawphil.net) and Chan Robles Law
Firm (chanrobles.com) compiled the files based on the imaged
document and maintain an online repository of the full text of
this jurisprudence from as early as 1901 to as recent as 2020
and made them publicly available. However, these texts, due
to the reconversion process, contain a lot of typos,
misspellings, wrong formatting, and other structural
misprints. The researchers took advantage of the free dataset
and downloaded the “dirty” text online using a python web
scraper script. Further text preprocessing and “cleaning” was
done to the data like removing typographical errors, HTML
tags, and CSS codes, unnecessary headers and footers, non-
UTF8 characters, numerals, and words appearing less than 5

123
Authorized licensed use limited to: Cornell University Library. Downloaded on May 24,2021 at 03:16:27 UTC from IEEE Xplore. Restrictions apply.

times. The text was split into lists of sentences using the
NLTK library to provide the best possible input for the
models. For consistency, all the words in the corpus were
lower-cased. Punctuation marks and special characters were
removed, and we constructed a matrix of co-occurrence
counts for words appearing within a window of 20 words.
Unnecessary headers and footers were also removed to
facilitate text processing later on. We obtained a total of
60,485 documents (text files), which were merged into one
big, cleaned corpus consisting of 196 million individual words
(tokens) amounting to 1.1 Gigabytes in terms of file size.

Fig u r e 3. t o p 25 mo s t f r e q u e n t w o r d s in t h e c o r p u s

Figure 3. Top 25 most frequent words exhibiting Zipfs Law, typical of a
large corpus.

Figure 3 offers an overview of the unigram distribution of
words in the processed corpus showing just the top 25 words.
The vocabulary, however, contains 183,942 unique tokens. It
is easy to see that it exhibits a Zipfian behavior. As would be
expected, stop words dominate the ranking and the
distribution peters out after the word it with frequencies below
1,000,000.

As points of comparison, recent work in computational
linguistics evaluating methods for extracting word
embeddings utilized a 2010 Wikipedia dump with 1 billion
tokens; a 2014 Wikipedia dump with 1.6 billion tokens;
Gigaword 5 which has 4.3 billion tokens; the combination
Gigaword5 + Wikipedia2014, which has 6 billion tokens; and
42 billion tokens of web data from Common Crawl. Taken
together, the corpus of judicial opinions compares favorably
to the work in computational linguistics employing these
tools, with two of the common corpora actually featuring
fewer tokens than the compiled judicial corpus. It is worth
emphasizing the scale of the data is comparable to that utilized
in prominent computer science applications, including the
original GloVe article.

Table 1. Top-5 similar words for a set of 20 selected words
based on cosine similarity using the word2vec model with
context window =15.

TABLE I. TOP 5 SIMILAR WORDS

W ord Nearest Neighbors

article code, art, provisions, paragraph, section

act acts, done, cannot, mere, clearly

action suit, cause, complaint, instituted, actions

crime murder, accused, offense, charged, committed

felony conspiracy, crime, commit, felonious, crimes

penalty reclusion, imposable, perpétua, imposed, penalties

W ord Nearest Neighbors

security guards, guard, tenure, secured, FEMJEG

fraud fraudulent, deceit, misrepresentation, mistake,
fraudulently

privacy prying, expectation, individual's, privacies,
confidentiality

intellectual cognitive, mental, retardation, adaptive, discernment

election elections, candidates, candidate, precinct, votes

immigrant immigration, immigrants, alien, deported, deportation

illegal illegally, dismissal, unlawful, recruitment, violation

drugs dangerous, drug, shabu, marijuana, paraphernalia

appeal appealed, appeals, decision, motion, certiorari

money amount, payment, paid, cash, sum

alcohol denatured, ethyl, spirits, alcoholic, distilled

complaint alleged, action, filed, answer, against

indictment indicted, information, indictments, offense, jeopardy

motion reconsideration, motions, dismiss, filed, petition

IV. THE EXPERIMENTS

The researchers cloned the original C/C++
implementations of word2vec, gloVe, and fastText from their
respective github pages. In the interest of time, we used two
computers for training and model generation: a 2015 model
MacBook Pro (8GB RAM/CPU/2 cores) and an Acer Aspire
(Intel Core i7 CPU at 2.2 GHz/8 cores) running Ubuntu 16. In
all the experiments, we just used a thread value of 2 to
maximize CPU processing. We set the vector size to 300,
which is the most common word embedding dimension used
for large corpora. We design the experiments such that for
each algorithm, we set a symmetric window of sizes 5, 9, and
15. These are ideal sizes with the given amount of data that we
have. We also set a minimum count of 5 for all the models.
This means that a word from the corpus occurring less than 5
times is removed from the vocabulary. This effectively
reduces the size of the vocabulary to 183,942.

TABLE II. DESIGN OF EXPERIMENTS

Experiment
ID

Algorithm
Loss Function Window

Size
T raining

Time3

1 Word2Vec - CBOW Cross-entropy
5 454

2 Word2Vec - CBOW
Cross-entropy

9 114

3 Word2Vec - CBOW Cross-entropy
15 65

4 Word2Vec - Skip-Gram
Negative
Sampling 5 669

5 Word2Vec - Skip-Gram
Negative
Sampling 9 331

6 Word2Vec - Skip-Gram
Negative
Sampling 15 476

7 GloVe
log-bilinear
regression 5 111

8 GloVe
log-bilinear
regression 9 137

9 GloVe
log-bilinear
regression 15 144

10 FastText
Negative
Sampling 5 322

11 FastText
Negative
Sampling 9 741

12 FastText
Negative
Sampling 15 1,013

a' Training time is in minutes.

124
Authorized licensed use limited to: Cornell University Library. Downloaded on May 24,2021 at 03:16:27 UTC from IEEE Xplore. Restrictions apply.

V. RESULTS AND DISCUSSION

For each algorithm, epochs or the number of training
iterations is set to 15 on the same set of words. For GloVe,
models were trained using AdaGrad, and we set the value of
alpha to 0.75 and max iter to 100, which are the
hyperparameter settings used in the original GloVe model. For
fastText that leverages on character «-grams, we used a
minimum value of 3 and a maximum value of 6 for n. We used
an adaptive learning rate with an initial value of 0.05. For
models that used negative sampling, we set the value of k to 5
(with a sampling threshold of 0.0001), which means that for
every target word we match 5 negative samples in the training.
The rest of the hyperparameters were set to their default value.
Table II below details the experimental design that the
researchers implemented. Because of the difference in
approach of the algorithms presented here, the researchers
tried their best to make each of the resulting models as
comparable as possible.

Word2vec perform better at semantic category while
fastText perform better on syntactical category. Generally, the
implementation with longer window size performs better in
the analogy test in terms of accuracy.

The table above shows the number of items each Juris2vec
word embedding model got correctly from various word
analogy tests. The researchers concocted a total of 4510-word
analogy tests on topics ranging from semantic tests of
Philippine geography to a more syntactically attuned test on
plural nouns and verbs. The Gender Test contains analogies of
gender counterparts for each noun (e.g., Tuan’ is to ‘woman’
as ‘king’ is to ‘queen’). Opposites Test contain items like
‘honest’ is to ‘dishonest’ as ‘healthy’ is to ‘unhealthy’ .
Comparative Test includes items like ‘big’ is to ‘bigger’ as
‘small’ is to ‘smaller’. Participles Test includes items like
‘dance’ is to ‘dancing’ as ‘sing’ is to ‘singing’ . The Adverb
Test basically just contains analogies of adjectives converted
to adverbs by adding Ty’ after the word, and the Plural Test
by adding ‘s’ or ‘es’ after the word.

The researchers assume that i f more training time (i.e.,
more epochs or iterations) is given, the accuracy of any model
would increase. Other factors that would improve the
performance are the window size and the length (dimension)
of the word vectors.

VI. CONCLUSION AND FUTURE WORK

In this work, we presented a domain-specific word
embedding model called Juris2Vec, which we would also
make publicly available for use in future experiments. The
language of interest is in English, Spanish and Filipino. We

trained Juris2vec from a large number o f the legal corpus of
Philippine Supreme Court decisions from 1901 to 2020. We
opted to train based on the word2vec skip-gram model, gloVe
and fastText. We were able to verily that fastText is better at
syntactical evaluations because of the subword information
embedded in each word vectors, whereas word2vec fare better
at semantic evaluations.

Overall, the field of neural word embeddings is
fascinating. Not only is the ability to mathematically capture
semantic context and word relations academically intriguing,
word embeddings have also been a hugely important driver
behind many However, word embeddings are not without
limitations, and ML practitioners sometimes turn to newer
pre-trained language modelling techniques (e.g., ELMo,
BERT, and OpenAI’s generative pre-trained transformers) to
overcome some of the inherent problems with word
embeddings like polysemy, explainability, and OOV.
Nevertheless, word embeddings remain one of the most
fascinating NLP topics today, and the move from sparse,
frequency-based vector representations to denser semantically
representative vectors is a crucial step in advancing the NLP
subdomain and the field o f legal AI.

For future work, the researchers would like to explore
other evaluation methods (e.g., extrinsic), other evaluation
metrics (e.g., perplexity), the evolution of word thru time (e.g.,
per decades or scores) and how bias (racial, gender, or) can
manifest in text using word embeddings. The extrinsic
evaluation using the generated word embeddings as features
in a document classification task classifier to use: Naive
Bayes, Logistic Regression, Support Vector Machines and
Random Forest (packages in scikit-learn) and comparing the
result with document classification using traditional NLP (11-
grams, tf-idf, bag-of-words) using NLTK and spaCy.

Ref er en c es

[1] K.S. Jones, “A statistical interpretation of term specificity and its
application in retrieval,” Journal of Documentation, ISSN: 0022-0418,
1 January 1972.

[2] T. Mikolov et al„ “Efficient estimation of word representations in
vector space” , in International Conference on Learning
Representations, 2013.

[3] J. Pennington, R. Socher, and C.D. Manning. “Glove: global vectors
for word representation,” in Conference on Empirical Methods on
Natural Language Processing 2014, vol. 14. 1532-1343.

[4] P. Bojanowski, E. Grave, and A. Joulin. “Enriching word vectors with
subword information,” in Transactions of the Association for
Computational Linguistics 2016, 5(1).

[5] V. Tshitoyan et al., “Unsupervised word embeddings capture latent
knowledge from materials science literature,” Springer Nature, 2018,
pp, 95-106,

[6] Risch, J. and Krestel, R. (2019), “Domain-specific word embeddings
forpatent classification,” Data Technologies and Applications, Vol. 53
No. 1, pp. 108-122. https://doi.Org/10.1108/DTA-01-2019-0002.

[7] Zhang, Y., Chen, Q., Yang, Z. et al. “BioWordVec, improving
biomedical word embeddings with subword information and MeSH,”
Sci Data 6, 52 (2019). https://doi.org/10.1038/s41597-019-0055-0.

[8] I. Chalkidis and D. Kampas, “Deep learning in law: early adaptation
and legal word embeddings trained on large corpora,” Artificial
Intelligence and Law ,vol. 27, pagesl71-198(2019).

125
Authorized licensed use limited to: Cornell University Library. Downloaded on May 24,2021 at 03:16:27 UTC from IEEE Xplore. Restrictions apply.

