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1 Introduction

Detecting objects from a similarly colored environment has been an open problem in
computer vision. Camouflage or color similarity is one of the major issues where the
object gets occluded or merged when they are of similar color with the environment
resulting in a difficult object detection [1]. One of the applications in agriculture
where camouflage problem exists is at detecting fruits or vegetables in a camou-
flaged environment for yield estimation, e.g. the foreground contains green fruits or
vegetables and the background contains green foliage.

Harvest time is critical particularly for vegetables and fruits; thus, there is a need
to automatically detect and localize fruits in images for yield estimation for proper
planning in labor, market and transport arrangement [2, 3]. Recent advances (e.g.
[2, 3]) in computer vision has led to obtaining fruit detection and counting from
images; however, this area still faces challenges because of illumination changes,
scale variation, occlusion and situations of camouflage. Camouflage situations refer
to the blending of the fruits to its foliage, stems and other objects of the environment
which in turn makes the fruit detection a difficult task.

Initial efforts on fruit detection and counting using deep neural networks were
presented in [2–6, 9]. Keresztes et al. [4] achieved an R2 correlation of 0.96 for 45
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samples of grapes and 0.85 for 150 samples of apples between the manual and auto-
matic counting. Chen et al. [2] proposed fruit counting based on a combination of
two convolutional neural networks which achieved an accuracy of 0.96 on 71 images
with 7,200 oranges and 0.91 on 21 images with 1,749 apples. Rahnemoonfar and
Sheppard [3] attained a 0.91 accuracy on 100 real images for automatic yield estima-
tion using synthetic training data. Fourie et al. [5] implemented a fruit detection and
localizer algorithm on 21 apple images with 442 objects resulting in 0.98 accuracy.
Stein et al. [6] used a pre-trained detector and Lidar to efficiently detect, track, count
and localize every piece of fruit with an error of 0.014 in a total of 522 trees with
71,609 mangoes. Sa et al. [9] developed a real-time fruit detector that can perform
up to a 0.83 F1 score with a field farm dataset comprising of at most 170 samples.
All the mentioned prior works have promising results; however, these systems were
trained to detect objects (e.g. oranges and tomatoes) with high color difference from
the leaves. This allows them to train their network with few samples. By increasing
the number of samples for the training dataset, deep learning models can achieve
better performance and generalization.

Though general object detection frameworks have brought remarkable break-
throughs in detecting different types of objects [7, 8], the current object detection
algorithms fail in specific application scenarios like fruit detection due to occlusion
and color similarity between the objects and the environment as illustrated in Fig. 1,
last column. As shown in the last column of Fig. 1, the model pre-trained on MS
COCO dataset [10] fails to detect any bell pepper or chili pepper. On the contrary, as
illustrated in Fig. 1, third column, our work performs object detection and counting
on fruits with heavy occlusion and high color similarity with its environment by

Fig. 1 a Input image: input images with high occlusion and color similarity of the objects with
the environment (bell pepper or chili pepper). b Ground truth: each image contains groundtruth
rectangular bounding box around each object which identifies the xmin, ymin, xmax, ymax for the
object. c Ours: by re-purposing the region-based convolutional network to bell pepper and chili
pepper images, our proposed system performs well in detecting heavily-occluded and camouflaged
objects in a similarly-colored foreground and background. d Faster R-CNN: the result predicted by
a generic object detection system
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increasing the number of images and re-purposing a region-based convolutional
neural network. The contributions of this paper are:

(1) we built two datasets (Bell Pepper and Chili Pepper) for sweet pepper detection.
The sample images were taken from the sweet pepper field, capturing the natural
settings of the object. The datasets are composed of 7700 images with 29,915
chili peppers and 3312 images with 14,548 bell peppers;

(2) we exhaustively tested various region-based convolutional neural networks
(Faster R-CNN Inception, Faster R-CNN Resnet50, Faster RCNN Resnet101,
R-FCN Resnet101) for a very challenging task of detecting heavily occluded
objects and highly-similar color of objects with its environment. To our
knowledge, this is also the first attempt that a region-based convolutional
neural network is used in recognizing and localizing camouflaged objects for
agricultural applications.

2 Proposed System

Figure 2 shows the overall block diagram of the proposed system. The network
takes an image and outputs a set of objects with rectangular bounding boxes and the
probabilities associated with it.

2.1 Image Datasets

Sweet pepper was chosen as the sample dataset since it is considered as a high-value
crop in the Philippines. Two varieties of peppers (green bell pepper and green chili
pepper) were used, that were high in occlusion and have high color similarity with the
environment. The samples for the green bell pepper dataset were collected during the

Fig. 2 Block diagram of our proposed system. The proposed system leverages the strength of
region-based convolutional neural network for fruit detection in a camouflaged environment
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day with no artificial lighting in a greenhouse in Impasugong, Bukidnon, Philippines.
A total of 552 images were taken for green bell pepper dataset. The samples for
the green chili pepper dataset were collected under an uncontrolled variability in
illumination since the climatic condition of the farm location was relatively cold
and humid in a cultivated farm in Lantapan, Bukidnon, Philippines. A total of 2200
images were taken for green chili pepper dataset. The images of both datasets were
acquired of size 3008 × 2000 in jpeg format using a Nikon D3200 24.2 MP digital
SLR camera.

2.2 Data Augmentation and Annotation

To improve the performance and generalization of deep neural networks, data
augmentation was applied to the existing datasets. Data augmentation was imple-
mented by applying horizontal flipping, rotations, shears, cropping and translation
to existing datasets. These techniques ensure that the model can work under multiple
angles and different orientations. The augmented images were added as additional
samples to the training and test sets. After data augmentation, there was a total of
3312 images from 552 naturally captured images of bell pepper and 7700 images
from 2200 naturally captured images of chili pepper.

The regions of interest for ground truth annotations were drawn and extracted
using a labeler software [11]. As illustrated in the second column of Fig. 1, a rectan-
gular box was drawn around each object in each image and these generated bounding
boxes were exported into xml files in Pascal Voc format which stores the coordinates
of the bounding box of regions of interest.

2.3 Implementation Details

The deep learning models were implemented using Tensorflow [14] by leveraging
on transfer learning of deep vision systems. To fully explore the capability of CNNs
in detecting and localizing fruit objects, four pre-trained models from MS COCO
dataset [10] were fine-tuned and evaluated for bell pepper and chili pepper datasets.
These pre-trained models include Faster R-CNN Inception-v2 [7, 12], Faster R-CNN
Resnet50 [7, 13], Faster R-CNN Resnet101 [7, 13] and R-FCN Resnet101 [8, 13].
The pre-trained model was downloaded from Tensorflow Object Detection API [14],
which is an open-source framework built on top of Tensorflow and trained on the
Microsoft COCO [10] dataset.

Table 1 shows a summary of the training and testing datasets. We fine-tuned the
modified object detector networks [7, 8] using our respective datasets for green chili
and green bell pepper, with momentum equal to 0.9 and an initial learning rate of
0.0003. The learning rate decreases by a factor of 3 × 10−5 every 9 × 105 iterations.
The learning rate was further reduced to 3 × 10−6 at 1.2 × 106 iterations. All
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Table 1 Summary of training and testing datasets. The annotated bell pepper dataset and chili
pepper dataset were randomly split into two datasets: 70% for training and 30% for validation

Dataset Bell peppers images objects Chili peppers images objects

Training (70%) 2318 10,141 5390 20,361

Validation (30%) 994 4407 2310 9554

Total images and objects 3312 14,548 7700 29,915

the models were trained with a momentum optimizer. We trained our system using
NVIDIA GeForce RTX2070. A network was trained separately for each dataset with
a batch size of 1. The network was trained for 6000 epochs and 20,000 epochs for
bell pepper and chili pepper dataset, respectively.

2.4 Evaluation Metrics

Object classification per category was evaluated using average precision (AP). As
shown in Eq. (1), the AP score is defined as the mean precision at the set of 11 equally
spaced recall values.

AP = 1

11
× (APr (0) + APr (0.1) + · · · + APr (1.0)) (1)

In order to evaluate the model on the task of object localization, we determined
how well the model predicted the location of the object. As shown in Eq. (2), the local-
ization task was evaluated based on the thresholds of Intersection over Union (IoU).
A threshold of 0.5 was set which means that if the IoU exceeds the threshold, then the
detection is marked as correct detection. The model with the highest average preci-
sion at 0.5 IoU was selected as the model for detecting and localizing camouflaged
fruits for inference to validation data.

I oU = Area of Overlap

Area of Union
(2)

3 Results

Table 2 and 3 present the result of the detection performance of four different models
and their corresponding training time to bell pepper dataset and chili pepper dataset,
respectively. Out of the four fine-tuned models, Faster R-CNN Resnet101 exhibited
the best performance for the bell pepper dataset, yielding an AP of 0.966. For the
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Table 2 Comparison of the
results obtained by our
proposed system employing
different region-based CNNs
on the bell pepper dataset.
Faster R-CNN Resnet101
(Bold text) outperforms other
models with AP@0.5 = 0.966

Method Basenet Training time Average
precision

R-FCN Resnet101 34 min 0.963

Faster R-CNN Resnet101 33 min 0.966

Faster R-CNN Resnet50 23 min 0.964

Faster R-CNN Inception 21 min 0.960

Table 3 Comparison of the
results obtained by our
proposed system employing
different region-based CNNs
on the chili pepper dataset.
Faster R-CNN Resnet101
(Bold text) outperforms other
models with AP@0.5 = 0.922

Method Basenet Training time Average
precision

R-FCN Resnet101 1 h 42 min 0.904

Faster R-CNN Resnet101 1 h 35 min 0.922

Faster R-CNN Resnet50 1 h 5 min 0.917

Faster R-CNN Inception 47 min 0.903

chili pepper dataset, Faster R-CNN Resnet101 also outperformed other models with
an average precision of 0.922.

The features of Faster R-CNN Resnet101, a very deep network, were sufficient in
the transfer learning for the detection of bell peppers and chili peppers. It is evident
that the region proposal network contributed to higher accuracy and efficiency. From
this result, it can be concluded that the model performs well in predicting the occur-
rence and position of the fruits in an image amidst high levels of occlusion and even
those highly-similar in color between the fruits and the background.

After finishing the training, the model trained with the highest average precision
was selected as the best model and exported to a single file for inference. The inference
system’s performance was measured using the validation datasets for bell peppers and
chili peppers. Figure 3 presents the sample result of inference of our proposed system

Fig. 3 Inference system on the highly-similarly colored environment. Our proposed system (3rd
column) substantially performed better than the generic region-based object detector (4th column)
on detecting bell peppers and chili peppers in a camouflaged environment
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Fig. 4 Visualization of feature maps to bell pepper and chili pepper input. a Input images (bell
pepper and chili pepper); b visualization image of feature maps of the first convolutional layer;
c visualization image of feature maps of the last convolutional layer

and a pre-trained Faster R-CNN object detection system on images with high color
similarity and heavy occlusion. Despite the high degree of color similarity between
the fruits and the foliage, our proposed method can detect the fruits efficiently and
correctly. Also, the system correctly recognized and localized the fruits even those
fruits which are almost hidden due to heavy occlusion.

Figure 4 shows the visualization of feature maps after applying the filters at the
first and last convolutional layer in the Resnet101 model for bell pepper and chili
pepper input, respectively. It can be observed that the result of applying filters in
the first convolutional layer retains most of the input image features. This means
that there are many activations on the edges and textures within the image. But as
the network goes deeper into the model, the feature maps become more sparse and
visually less interpretable. This implies that the filters abstract the features from the
image into more general concepts and convert it to the required output classification
domain.

4 Conclusion and Future Work

We presented a system that automatically detects and localizes fruits from images
captured from the natural settings of the fruits. By increasing the number of images
and leveraging on the four pre-trained networks, the evaluation results show that
the fine-tuned model on Faster R-CNN Resnet101 performed the best among all the
models in detecting heavily-occluded and camouflaged fruits. It yielded an average
precision of 0.92 for chili pepper and 0.96 for bell pepper. The inference shows that
the fine-tuned model on Faster R-CNN detected very well to heavy-occluded and
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similarly-colored foreground and background bell pepper and chili pepper images.
This indicates that the trained fruit detection and counting model can be integrated
into applications for precision agriculture such as automated fruit harvesting, yield
estimation, and plant phenotyping.

One direction of future work is to integrate the trained fruit detector to an
unmanned ground vehicle. Moreover, it can also be extended to detect other parts of
a plant such as leaves, flowers, and stems which may be used for plant phenotyping
and plant pathology. The proposed system can still be improved by extending its
functions to more camouflaged images in agriculture and other domains.
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