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Spotting abnormal or anomalous events using street and road cameras relies heavily on human 
observers which are subject to fatigue, distractions, and simultaneous attention limit. There 
are several proposed anomalous event detection systems based on complex computer vision 
algorithms and deep learning architectures. However, these systems are objective-agnostic, 
resulting in high false-negative cases in task-driven abnormal event detection. A straightforward 
solution is to use visual attention models. However, these are based on low-level features 
integrated with object detectors and scene context, rather than on the observers' object of 
gaze. In this paper, we explore a task-driven visual attention-based traffic accident detection 
system. We first examine the human fixations in free-viewing and task-driven goals using our 
proposed, first task-driven, fixation dataset of traffic incidents from different road cameras 
called TaskFix. We then used TaskFix to fine-tune the visual attention model, in this work called 
TaskNet. We evaluated the proposed fine-tuned model with quantitative and qualitative tests 
and compared it with other visual attention prediction architectures. The results indicate the 
potential of the visual attention models in abnormal event detection. The dataset is available 
here: https://bit.ly/TaskFixDataset 

INTRODUCTION
Catching abnormal events related to security in public and 
private spaces has advanced from manual roving to remote 
monitoring through multiple cameras strategically located 
in the vicinity. In traffic monitoring, in particular, control 
center personnel spot traffic accidents through road 
cameras rather than having traffic enforcers deployed on 
the roads. Recently, the task of simultaneously monitoring 
road cameras has become more challenging due to the 
significant increase in their number. 

A research area in computer science and behavior 
understanding that could manage this challenge is 
anomaly detection. Anomaly detection aims to identify 
patterns in video feeds that are different from normal or 
expected behavior (Chandola et al. 2009). In the traffic 
monitoring context, anomalous or abnormal events could 
include gathering of people on the road, traffic violations, 
jaywalking, illegal parking, and traffic accidents. The 
typical approach is to use trajectory-based features 
(Ahmed et al. 2019) together with a classification or 
clustering algorithm to detect abnormal events.  However, 
a comprehensive survey of anomaly detection (Kumaran 
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et al. 2020) identified key issues in employing hand-
crafted features, e.g. model generalizability; instead, 
exploring deep neural network (DNN)-based approaches 
are suggested. 

Sophisticated DNN-based anomaly detection systems 
for detecting traffic accidents are proposed in (Shine et 
al. 2019; Yao et al. 2019; Zhao et al. 2019). The work 
of Yao and colleagues (2019) is designed for vehicle-
mounted cameras while the works of Shine et al. (2019) 
and Zhao et al. (2019) assume stationary vehicles as 
part of the abnormal scenes. These make these systems 
limited to specific camera setups and in locations where 
roadside parking is allowed. There are other proposed 
anomalous event detection algorithms [e.g. Dhole et al. 
(2019); Ionescu et al. (2019); Yang et al. (2019)], but these 
are only applicable to surveillance scenarios captured by 
the University of California San Diego (UCSD 2013), 
Avenue (Lu et al. 2013), and ShanghaiTech (Luo et al. 
2017) anomaly detection datasets. These systems are also 
objective agnostic, which will result in high false positives 
when used in traffic accident detection. 

In this work, we study human visual attention models in 
traffic accident detection. The following motivates us to 
use such an approach:

• First, using a visual attention model avoids the 
training samples problem in common object 
detection systems due to the sparse occurrence of 
anomalous events. Works that involved fine-tuning 
visual attention models (Cordel et al. 2019; He et 
al. 2019; Murabito et al. 2018) perform well in 
predicting human attention despite the number of 

fine-tuning samples used. 

• Second, using a visual attention model avoids the 
problem with the imbalanced distribution of normal 
and abnormal data as it only needs fixation data in 
a scene to allow competition between its neurons 
and show the most salient location in the scene (Itti 
and Koch 2000). 

• Finally, being DNN-based, the visual attention 
model avoids the problem of choosing the 
appropriate feature extraction, environmental 
variations, and camera movement.

However, current visual attention models or saliency 
models [e.g. in Huang et al. (2015), Itti and Koch (2000), 
Kruthiventi et al. (2015), Tang et al. (2016)] are based on 
the free-viewing or bottom-up visual attention mechanism, 
which combines low-level features with object detectors 
and scene context. Detecting traffic accidents in a scene 
requires a saliency model that is task-driven or based on 
the top-down mechanism of visual attention. 

In this paper, we present the TaskFix dataset – a task-
driven human fixation dataset collected from human 
observers performing traffic accident detection exercise 
(see Figure 1a for example collected data). We perform 
an analysis on TaskFix and found a significant statistical 
difference between the human fixations in normal and 
abnormal scenes. Based on these findings, we investigate 
further if a saliency model could be modulated to predict 
human attention on performing traffic accident detection 
tasks. TaskFix is used to fine-tune our proposed model 
named TaskNet. Our main contributions are as follows:

Figure 1. Using TaskFix, we showed that the fixations for abnormal traffic scenes, first four examples in (a), are statistically different from 
the fixations in normal traffic scenes, second four examples in (a). We use this observation to design a visual attention-based 
traffic incident detection model. Shown in (b) are the ground truth, the predicted locations of traffic accidents using TaskNet, 
and the outputs from a free-viewing model.
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1. We provide a novel fixation dataset, called TaskFix, 
whose fixation data were collected from human 
observers performing traffic accident detection 
exercise. TaskFix consists of scenes with 718 abnormal 
traffic events (vehicular accidents) and 718 normal 
traffic events, for a total of 1436 images. This allows 
research on top-down human attention and anomalous 
event detection. 

2. We discover a significant statistical difference in the 
fixation data of observers under the detection task 
when the event being spotted is in the scene and not 
in the scene. 

3. We show that a visual attention model could encode 
the detection task performed in the fixation collection. 
The visual attention model shows better performance 
in detecting traffic accidents than other free-viewing-
based saliency models (in qualitative and quantitative 
evaluations, refer to Figure 1b).

RELATED WORK 
One of the popular approaches in anomaly detection is 
trajectory analysis, as detailed in a survey article by Ahmed 
et al. (2019). In trajectory-based approaches, the system 
uses object trajectory features to represent the positions 
of an object over time. These features are then used for 
event detection via Hidden-Markov Model [e.g. in Suk et 
al. (2019)], Bayesian framework [e.g. in San Miguel and 
Martinez (2012)], or Dirichlet process [e.g. in Bastani et 
al. (2016)]. In traffic surveillance, Ahmed and colleagues 
(2018) proposed to cluster the trajectory of a moving object 
by assigning a normality score to an object path based on a 
t-norm of fuzzy sets. The trajectory features used are high-
level features including origin, destination, path, speed, 
and object size. Another trajectory-based work on traffic 
surveillance (Santhosh et al. 2019) focuses on identifying 
the moving object at the pixel-level through the use of 
optical flow and Bayesian algorithm. It resulted in a faster 
algorithm but only works for spatially separated objects and 
specific camera positions. Trajectory-based approaches, 
however – as noted by Ahmed et al. (2019) – require 
long-duration tracking, long-duration video datasets, and 
trajectory clustering, which highly depends on the track 
quality. Our work proposes a prediction of abnormal events 
at the scene level, thus removing the dependence on long-
duration video datasets.

Kumaran et al. (2020) conducted a comprehensive survey 
on anomaly detection, which summarized key issues, 
including i) the limitations of benchmark comparisons 
in representing all real-life situations, and ii) the lack of 
generic techniques applicable to all datasets. The team 

also identified a possible solution through the use of DNN 
architecture. Some of these DNN systems that are applied 
in road anomaly include the work of Xu et al. (2017) that 
uses DNN and Autoencoder as the main feature extractor 
and SVM for identifying non-pedestrians appearing on 
walkways, Zhou et al. (2016) that uses CNN to detect 
U-turn movement of vehicles and unexpected presence of 
vehicles on walkways, and Vishnu et al. (2018) that detects 
congestions, ambulances, and accidents. In training their 
computational models, Xu et al. (2017) used the UCSD 
datasets, Zhou et al. (2016) used the UCSD, UMN, and 
U-turn datasets, and Vishnu et al. (2018) used their own 
local dataset.  

More recently, traffic accident detection via DNN-based 
anomaly detection systems (Shine et al. 2019; Yao et al. 
2019; Zhao et al. 2019) has been proposed. The work of Yao 
et al. (2019) presented an unsupervised model for traffic 
accident detection using a vehicle-mounted camera. The 
works of Shine et al. (2019) and Zhao et al. (2019) used 
region proposal-based DNN models to detect anomalies in 
road cameras. Both works assumed that normal vehicles 
never stay on the road except for unusual events. The former 
addressed the parked vehicle problem using a rule-based 
decision module while the latter used multi-object track 
algorithms to detect moving vehicles. These works are 
insightful, however, the datasets used to train these systems 
are formed using single or homogeneous scenes and, thus, 
cannot be applied to traffic analysis and monitoring since 
data obtained are from multiple camera feeds. 

Visual attention models or saliency models are trained to 
determine and predict the visual attention of humans. It 
produces saliency maps that simulate the gaze movement 
of humans in an image. Huang et al. (2015) introduced 
a saliency prediction model that integrates a pre-trained 
DNN architecture. It takes advantage of the semantic-
rich features to reduce the semantic gap between the 
saliency model and human eye fixation. Kruthiventi et al. 
(2015) also constructed a fully connected DNN to predict 
human visual attention. It incorporates a location biased 
convolution layer to model location-dependent patterns. 
Cornia et al. (2016) used a convolutional neural network 
to extract features of an image to predict the saliency 
map. It incorporates a loss function to train the model 
and to address the center-bias problem of saliency maps. 
These models, however, mimic the free-viewing or the 
bottom-up mechanism of human attention rather than the 
task-driven or top-down mechanism of human attention.

Our work investigates human attention models for a top-
down anomaly detection task, particularly traffic accident 
detection. Due to limited datasets (refer to Table 1 for a 
summary of related datasets) with traffic accidents as 
anomalous events, we built our own datasets and collected 
fixation data. 
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We first propose a task-driven dataset. We performed a 
statistical analysis on the dataset and used our observation 
to develop a visual attention-based traffic accident 
detection model. We then utilized this task-driven dataset 
to investigate a visual attention-based computational 
model for traffic accident detection.

METHODOLOGY
To facilitate the methodology discussion, we define 
the following terms used in this section. Anomalous or 
abnormal traffic scenes are used to describe scenes with 
traffic accidents; otherwise, the scene is described as a 
normal traffic scene. Fixation data or simply fixations 
refer to the eye gaze location (x,y) in a scene collected 
through an eye tracker device. The fixation map reflects 
the distribution of the fixation data in the scene derived by 
passing a low-pass Gaussian filter over the fixation data.

The Proposed TaskFix Dataset Collection
As summarized in Table 1, there are several datasets for 
anomaly detection used in previous works, but these do 
not contain traffic accidents and do not have fixation data. 
There are several datasets containing fixation data, but 
these reflect image saliency based on bottom-up attention 
mechanism rather than abnormal event based on top-down 
attention mechanism. In order to study anomaly detection 
in road traffic, a dataset containing traffic accidents – with 
fixation data – is created.

Normal and abnormal traffic scenes are collected from 
video frames of road cameras showing natural traffic 
flow and vehicular accidents, respectively. These scenes 
are compiled from diverse road locations with various 
camera angles, quality, and weather conditions for a full 
set of 1436 images, with 718 samples for each traffic scene 
type. The video frames from these cameras are read and 
resized to 1024 × 768. 

Through the Tobii Eye Tracker 4C with a 90-Hz sampling 
rate, the eye fixation data for each image sample are 
collected from 18 observers, aged 18–27 yr old with 
normal or corrected-to-normal vision. The images are 
presented to the observer on a 15-in LCD monitor with 
a 1366 × 768 screen resolution. The images are scaled to 
the full height of the screen, with the image width fixed 
at 1024 pixels. For each image shown, the observers are 
instructed to spot the occurrence of traffic accidents in 
the scene. Each image is shown for 5 s followed by a 
drift correction that requires observers to fixate at the 
center. Separately, three undergraduate students are hired 
to draw a bounding box (bbox) on the location of traffic 
accidents. The intersection of these bboxes was used as 
the ground truth bbox. 

Fixation Data Validation 
The agreement of the observers' fixations on the 
occurrence and location of traffic accidents is computed 
to quantitatively determine the collected fixation quality. 
A variable P , shown in Equation 1, of the Fleiss' Kappa 
(Nichols et al. 2010) is used to calculate the extent to 
which the observers agree in detecting abnormal incidents:

Table 1. Comparison of TaskFix dataset with other publicly available datasets for anomaly detection and for image saliency.

Datasets Object in the abn. 
events Anomalous event examples Scene # of sam-

ples
# of abn. 

events
Fixation 

data

A
no

m
al

y 
de

te
ct

io
n 

da
ta

se
t

CAVIAR Person/people One person walking, fainting, 
slumping, people meeting Lobby No

UCSD
1 and 2 Person/people People walking across the 

walkway or grass Walkways 14,000
4,560

4,005
1,636 No

U-turn Vehicles U-turn Junction – – No

UMN Person/people Unusual crowd activity Walkways 7,710 – No

Avenue Person/people Wrong direction, strange ac-
tion, abnormal object

Building 
entrance 30,652 3,820 No

Shanghai-
Tech

Person/people/ 
object

Wrong direction, strange ac-
tion, abnormal object Walkways 317,398 17,090 No

Im
ag

e 
sa

lie
nc

y 
da

ta
se

t

SALICON NA NA NA 10,000 0 Yes

OSIE NA NA NA 700 0 Yes

EMOd NA NA NA 1,019 0 Yes

MIT300 NA NA NA 300 0 Yes

CAT2000 NA NA NA 2,000 0 Yes

Ours (TaskFix) Vehicles Accidents Road 1,436 718 Yes
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(1)

where N is the number of images, n is the number of 
observers, and K = 2 to represent if the observer fixated 
on the abnormal incident or not. That is, nij for j = 1 is the 
number of observers who do not fixate on the ith object, 
and nij for j = 2 is the number of observers who fixate 
on the ith object. The observer fixated on the abnormal 
incident if 80% of its fixations are in the bbox. P  is, 
thus, computed for 718 abnormal traffic images only and 
is equal to 0.85. A P  value approaching 1.00 indicates 
high agreement. 

The ground truth fixation maps for the image samples are 
generated by passing a low pass Gaussian filter on the 
fixation matrix and then performing normalization (refer 
to Figure 2a). Unlike previous findings (Judd 2011; Zhao 
and Koch 2013), TaskFix average fixation map shows 
slight preference towards the top portion of the fixation 
maps, which corresponds to the farther part of the road 

(please refer to Figure 2b), presumably because observers 
were under a task to look for abnormal traffic scenes rather 
than free-viewing. 

Experiments on the Dataset 
The results of the experiments performed on TaskFix are 
summarized in Table 2.  Note that, on average, 87% of the 
fixations in the abnormal traffic scenes are in the bbox.

Entropy is a statistical measure of the randomness of 
the fixation map of each image. Thus, in free-viewing 
fixation maps that reflect the salient image region, the 
entropy depends on the presence of distinct objects that 
consistently attract human attention (Xu et al. 2014). 
Interestingly, for task-driven fixation maps, the clusters 
of fixations in the location of the abnormal scenes result 
in lower entropy, as opposed to the scattered fixations in 
the normal traffic scenes. The histogram of entropy levels 
is shown in Figure 2c. The abnormal traffic scenes have 
a mean entropy level of 2.07 with a standard deviation of 
0.58. The normal road traffic images have higher entropy 
with a mean equal to 4.50 and standard deviation equal to 

Figure 2. TaskFix is composed of abnormal [e.g. first row (a)] and normal [e.g. second row (a)] scenes from various traffic cameras. The 
fixation data collected are downsampled and filtered to generate the ground truth fixation maps, shown in last column (a). The 
average fixations of TaskFix show center bias in (b), with slight preference at the upper portion of the image. The fixation maps' 
entropy distribution implies that the difference between normal and abnormal traffic scenes (c).

Table 2. t-test results on the fixation densities of TaskFix.

Metrics Average t(df) p

Fixations inside 
bbox and total fixa-
tions ratio

0.87 717 < 0.001

Entropy abnormal 
scenes 2.05 717 < 0.001

Entropy normal 
scenes 4.70 717 < 0.001

AttI of the most 
salient part in the 
abnormal scenes

0.72 717 < 0.005

AttI of the most 
salient part in the 
normal scenes

0.34 717 < 0.005

0.50. model visual attention in different resolutions. The 
VGG-16 (Simonyan and Zisserman 2014), GoogLeNet 
(Szegedy et al. 2015), and SSD (Liu et al. 2016) feature 
networks are considered in the evaluation. For each branch 
of the DNN, the input image is resized into corresponding 
image resolutions – one is 300 × 400 and the other is 600 
× 800. The fully connected layers are replaced with an 
interpolation layer. The neural responses of the coarse 
and fine images are then concatenated. Finally, a 1 × 
1 convolutional layer is used to linearly combine the 
concatenated feature maps generating the saliency map. A 
classifier, composed of a 100-node fully connected layer 
and an output activation node, is finally cascaded to the 
1 × 1 convolution layer. 

Philippine Journal of Science
Vol. 150 No. 2, April 2021

Juan et al.: Investigating Visual Attention-
based Traffic Accident Detection Model

519



Architecture Training and Testing 
In fine-tuning the visual attention model, cross-
entropy is used as the objective function. The TaskNet 
model is first trained with SALICON dataset (Jiang 
et al. 2015), which has 10000 sample images and 
fixation maps. Afterward, the TaskFix dataset is used 
for fine-tuning. We performed fine-grain analysis by 
evaluating which set of TaskFix dataset is best for 
fine-tuning, i.e. the complete TaskFix (TaskFixALL) 
that consists of all the normal and abnormal scene 
fixation maps, the modified TaskFix (TaskFixMOD) 
that consists of the abnormal scene fixation maps 
and black images as the fixation maps for normal 
scenes, and only the abnormal scene fixation maps 
of TaskFix (TaskFixABN). We also fine-tuned the 
SALICON-trained architectures using OSIE (Xu et 

al. 2014) to compare our proposed network with free-
viewing visual attention models. Table 3 summarizes 
the experiments we performed.

The TaskFixALL training set has 718 samples, which 
consists of 359 abnormal and 359 normal road traffic 
scenarios. The other 359 abnormal samples in the 
TaskFixALL dataset are used for the evaluation of the 
generated saliency maps. The TaskFixMOD dataset contains 
the same 718 stimuli images of the training set. However, 
the fixation maps of the normal images are replaced with 
black maps only. The fixation maps for the abnormal 
images are retained. The TaskFixABN dataset only consists 
of abnormal road traffic images from the TaskFixALL 
training set and test set. 

The training and testing are implemented using the Caffe 
framework. The feature detectors are first trained and 
fine-tuned. All the configurations in Table 3 are trained 
using the SALICON dataset with a momentum of 0.9 
and an initial learning rate of 1e–5. The learning rate 
decreases by a factor of 0.1 every 8000 iterations. Due 
to a large amount of training data and limited memory 
resources, the loading of input images and training 
were performed one image per iteration. Validation data 
shows that after three epochs, the performance started 
to stabilize. The trained model is then fine-tuned using 
the datasets indicated in Table 3. All networks use the 
same test set from the TaskFix dataset for the qualitative 
and quantitative evaluation. After training the feature 
detectors, its weights are frozen, and the classifier is 
trained (last layers after the saliency map in Figure 3) 
using TaskFixALL for 10 epochs. Classifier weights are 
randomly initialized with mean equal to 0 and standard 
deviation equal to 1e–4.

Table 3. Summary of experiments conducted to determine the best 
configuration and fine-tuning samples to use.

Name Feature detec-
tor Training set Fine-tuning

TaskNet VGG-16

SALICON 
dataset

TaskFixALL

TNv1 GoogLeNet TaskFixALL

TNv2 VGG-16 TaskFixMOD

TNv3 GoogLeNet TaskFixMOD

TNv4 VGG-16 TaskFixABN

TNv5 GoogLeNet TaskFixABN

TNv6 SSD TaskFixALL

TNv7 SSD TaskFixMOD

TNv8 SSD TaskFixABN

FNv1 VGG-16 OSIE

FNv2 GoogLeNet OSIE

FNV3 SSD OSIE

Figure 3. The TaskNet model is composed of parallel feature extractors that capture human attention responses at different resolutions. 
These are combined linearly via interpolation layers at the end of each branch, via concatenation layers, and a 1 × 1 convolution 
layer. The abnormal images from the TaskFix dataset are used for fine-tuning the proposed model. Fully connected layers are 
used as classifiers to predict if a scene contains an abnormal incident.
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RESULTS AND DISCUSSION 
We performed a comparison of quantitative and qualitative 
performance of TaskNet using different combinations 
of fine-tuning datasets (TNv's in Table 3) and DNN 
architectures, as well as with other free-viewing models 
(FNv's in Table 3) and saliency models. 

What Do Saliency Metrics Mean? 
The saliency metric scores reported in this work are AUC-
Judd, sAUC, NSS, CC, KL, SIM, and EMD. AUC-based 
scores are the most used metric for saliency evaluation. 
It is invariant to contrast and monotonic transformation 
such that it is particularly good in detection applications. 
NSS and CC are highly related saliency metrics because 
of their analogous computation. NSS measures the 
correspondence between the prediction and the ground 
truth fixation. It is sensitive to false positives, relative 
differences in saliency across the image, and monotonic 
transformation. Similarly, CC measures the correlation 
between the prediction and the ground truth fixation. As 
opposed to NSS, CC equally penalizes false positives, 
and false negatives such that the increase in CC cannot 
distinguish whether the gain is due to false positives or 
false negatives. 

KL and SIM rank differently the predicted fixation maps, as 
opposed to NSS and CC because these metrics (KL and SIM) 
are extremely sensitive to false positives. KL is a dissimilarity 
metric that evaluates the loss of information when the 
saliency map is used to approximate the ground truth fixation 
map. SIM measures the similarity between the saliency map 
and the ground truth fixation map. Both SIM and KL highly 

penalize misdetections. The EMD score depicts the amount 
needed to move the density of the saliency map to match the 
ground truth fixation map. The best score for this metric is 
0 since the density of the saliency map does not need to be 
moved. These saliency metrics are exhaustively characterized 
by Bylinskii et al. (2012, 2019).

Results 
The quantitative results are presented in Table 4. TaskNet 
shows promising performance in predicting the location of 
the observers' object of gaze – as indicated by AUC-Judd 
metric – although not the best in terms of sAUC, which 
penalizes models incorporating center bias. TaskNet used 
the TaskFix dataset, which shows slight center bias (see 
Figure 2b). In terms of CC and SIM, TaskNet also shows 
the best performance when the fixation map is considered 
as a probability distribution. When compared with free-
viewing models, SALICON and SalNet (Pan et al. 2019), 
the evaluation shows that TaskNet is the most optimized 
for task-based attention prediction. Finally, with respect to 
NSS and KL, TaskNet shows the best results in predicting 
the location of the eye-fixation of observers looking 
at traffic accidents. NSS and KL metrics consider the 
range of values during the evaluation, thus capturing the 
relative values assigned to image regions. It is important 
to determine the most important image region because it 
could contain the location of a traffic accident. 

We present in Figure 4 the qualitative performance of 
the different attention models. The bboxes in the stimuli 
column indicate the location of the traffic accident. From 
the figure, we make the following key observations. First, 

Table 4. Quantitative comparison of TaskNet performance with other attention models, in predicting observers’ attention while looking for 
traffic accidents. The values in bold are the best in each metric. ↑ means higher is better, ↓ means value is better.

Metrics AUC-Judd↑ sAUC↑ NSS↑ KL↓ EMD↓ CC↑ SIM↑

Ta
sk

-d
riv

en

TaskNet 0.91 0.63 3.29 0.99 4.78 0.67 0.52

TNv1 0.89 0.65 2.72 1.31 3.11 0.58 0.47

TNv2 0.91 0.62 3.21 1.13 5.37 0.65 0.52

TNv3 0.89 0.64 2.65 1.31 3.04 0.56 0.45

TNv4 0.91 0.65 2.83 1.18 2.72 0.57 0.50

TNv5 0.87 0.64 1.80 1.60 0.94 0.38 0.31

TNv6 0.90 0.63 3.26 1.02 5.13 0.66 0.50

TNv7 0.89 0.63 2.91 1.10 3.98 0.64 0.49

TNv8 0.91 0.64 3.25 1.15 4.21 0.65 0.48

Fr
ee

-v
ie

w
in

g

FNv1 0.87 0.57 2.06 1.50 2.87 0.42 0.34

FNv2 0.87 0.64 1.91 1.55 1.12 0.40 0.32

FNV3 0.88 0.62 2.61 1.26 1.65 0.44 0.40

SALICON 0.85 0.59 1.60 1.72 1.35 0.34 0.29

SalNet 0.87 0.67 2.06 1.61 0.91 0.43 0.30
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as opposed to free-viewing models, visual attention models 
can be trained to perform an observer's task, attenuating 
image semantic. Comparing the TaskNet predicted location 
of traffic accidents to those predicted by the free-viewing 
based networks (FNv1, FNv2, and FNv3) and the outputs 
of the saliency models SALICON and SalNet, TaskNet 
consistently shows better performance. Note that free-
viewing-based models mimic human attention spotting 
the salient part of an image based on semantic features, 
e.g. color contrast, texture, and object size. Second, 
repurposing visual attention models only need to be trained 
in scenes where the goal of the observer is present, i.e. using 
TaskNetABN. If trained with normal scenes, the model will 
perform worse. Compared with other TaskNet versions, 
TNv2 and TNv4 show false detection, which implies that 
it is best to train the network on how to look for abnormal 
events only. While TNv1, TNv3, and TNv5 have minimal 
false detection, TaskNet's quantitative performance is better.

The saliency maps are generated by resizing the output 
feature map of the 1 × 1 convolution filter to match input 
image size. A visualization of the top-five activation nodes 
from this output feature map of TaskNet, SALICON, and 
SalNet is shown in Figure 5a. This is performed by getting 
the top five node values from the output feature map and 
mapping their respective regions in the 600 × 800 input 
image. These nodes correspond to the predicted top-five 

most salient 32 × 32 regions in the scene. TaskNet top-five 
nodes all coincide with the abnormal incident location, as 
opposed to the top-five nodes of SALICON and SalNet, 
which do not cluster in one location. 

Detecting Traffic Accidents via a Fully-connected 
Network 
As discussed in the Experiments on the Dataset, the 
fixation maps of abnormal traffic scenes have low entropy 
due to clustered fixations, while fixation maps of normal 
traffic scenes have high entropy due to scattered fixations. 
The entropy of the TaskNet saliency maps – as predicted 
by the saliency models, SALICON, and SalNet – are 
compared with the entropy of the fixation maps, as shown 
in Figure 5b. The entropy for the abnormal scenes fixation 
maps is significantly lower than the entropy of normal 
scenes fixation maps (p < 0.001). For the saliency maps of 
TaskNet, the mean entropy of abnormal scenes also shows 
a significant difference from the mean entropy of normal 
scenes (p < 0.005). This indicates that the resulting salient 
region for the abnormal images is clustered in one area 
while the normal images have scattered salient regions.

Inspired by these important observations, a classifier is 
appended and trained using TaskFix. The performance 
high false-positive rate (= 0.18) and low false-negative 

Figure 4. Qualitative comparison of predicted eye fixation from TaskNet, different versions of task-driven models, free-viewing-based 
models, and saliency models. The yellow boxes indicate the location of the traffic accident. Comparing TaskNet with other models 
shows improvement in predicting the location of traffic accidents.
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Table 5. Classification performance of the proposed system. The 
false omission rate measures the proportion of misdetected 
accidents among those which are rejected.

Metrics Values

True positive instances 326

False-negative instances 33

True negative instances 293

False-positive instances 66

Accuracy 0.86

Precision 0.83

Recall 0.91

False omission rate 0.33

False discovery rate 0.17

Figure 5. (a) Output feature map visualization shows that the TaskNet's top-5 nodes cluster around the location of traffic accidents (see 
second row) while the free viewing-based models' top-5 predictions are in other image portions. Also, (b) Wilcoxon's signed-rank 
test shows that the abnormal and normal scenes of the ground truth fixation maps and TaskNet predicted maps differ significantly 
in terms of entropy levels. ** means p < 0.001, * means p < 0.005, and n.s. means no significant difference.

rate (FNR; = 0.09) is observed (refer to Table 5 for 
the summary). Low FNR is aimed at systems that 
detect possible cases of abnormal events. The overall 
classification accuracy is 0.86, with precision equal to 
0.83 and recall equal to 0.91.

CONCLUSION 
Most of the road cameras are monitored simultaneously 
by human observers. It is, thus, practicable to develop a 
traffic accident detection system that mimics a human 
observer performing abnormal event spotting tasks. In this 
work, we propose the first, human visual attention-based, 
traffic accident detection system. 

We present a novel, task-driven fixation dataset of normal 
scenes and traffic accident scenes called TaskFix. TaskFix 
is composed of 718 image samples for each scene type 

containing normal scenes and traffic accident scenes. 
Statistics show that there is a significant difference in 
the ground truth fixation maps' entropy level of normal 
scenes and traffic accident scenes. Using TaskFix, we 
then encoded in a visual attention model called TaskNet, 
the human observers' task of catching a traffic accident. 
TaskNet performance vis-à-vis other free-viewing-
based visual attention models, in mimicking task-driven 
observers, is demonstrated using qualitative, quantitative, 
statistical, and visualization experiments. TaskNet 
outperforms other visual attention models. 

To our knowledge, this is the first attempt to use a fixation 
data-driven, visual attention model for abnormal incident 
detection. TaskNet is unique from other existing anomaly 
detection systems in that it is visual attention-based. It 
only needs fixation maps collected from observers under 
a task. Thus, TasKNet avoids the problems of imbalanced 
distribution and the sparse occurrence of abnormal events. 
Automatic detection of anomalous events, especially 
traffic accidents, is a critical task; thus, TaskNet use case 
is for alert systems to assist the authorities.

One major limitation of the current TaskNet is fixation 
dataset specific, i.e. it mainly works for traffic accident 
scenes that were used in the fixation training. We will 
make a more generic anomaly fixation dataset for our 
future work. Meanwhile, we foresee that as we make our 
model more generic to different anomalous events, both 
in scenes and in videos, anomaly detection using only 
saliency will be a challenge. 
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