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Abstract: In this work, we present a network architecture with parallel convolutional neural networks
(CNN) for removing perspective distortion in images. While other works generate corrected images
through the use of generative adversarial networks or encoder-decoder networks, we propose a
method wherein three CNNs are trained in parallel, to predict a certain element pair in the 3× 3
transformation matrix, M̂. The corrected image is produced by transforming the distorted input
image using M̂−1. The networks are trained from our generated distorted image dataset using KITTI
images. Experimental results show promise in this approach, as our method is capable of correcting
perspective distortions on images and outperforms other state-of-the-art methods. Our method also
recovers the intended scale and proportion of the image, which is not observed in other works.
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1. Introduction

Perspective distortion occurs if the objects in an image significantly differ in terms of scale and
position, from how the objects are perceived by an observer [1]. This can be classified as first-order
distortions modeled by multiplying an undistorted image with a transformation matrix M of size
3× 3. First-order distortions can also be caused by an incorrect acquisition environment, such as
capturing from an incorrect angle or motions of objects or the photographer. Higher-order distortions
are typically caused by capturing a scene with an inappropriate focal length. For example, a wide-angle
lens provides a greater angle of view than a normal lens but leads to objects appearing stretched
and asymmetrical while the telephoto lens makes objects appear closer to one another than what is
perceived in the scene [2].

To some extent, perspective distortion is intentionally applied to images to create artistic effects
such as emphasizing a certain object in the scene by making it appear larger than others, and other
artistic manipulations and scene editing proposed in the literature [3,4]. Distorted images affect the
visual perception of objects in the scene and thus, perspective distortion correction is required on some
aspects of photography and computer vision applications.

One area where perspective distortion correction is also needed is in traffic surveillance systems
where distorted images affect the performance of vehicle recognition, license plate recognition [5],
and other tasks such as speed estimation and distance measurements. Scanned documents may appear
warped or misaligned, which need to be corrected for document analysis [6].
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Image registration algorithms typically use transformation matrices that map an image to a
different position or orientation in Euclidean space [7]. In this study, we propose a framework for
correcting first-order distortions using multiple convolutional neural networks trained in parallel,
that compose the transformation matrix, M̂ of size 3 × 3, of a distorted image, where M is the
ground-truth that caused the distortion (Figure 1). Distortion types that can be corrected by our
proposed network are shown in Figure 2. The key idea to our approach is that we train a certain
network to produce a certain element pair in M̂, which contributes to a certain effect in the image,
i.e., element pair inducing shear effect, or scale effect. M̂−1 is then applied to the distorted image to
produce the correct image. Since each network only produces a certain element pair in M̂, it provides
a more straightforward approach by simply applying a transformation to correct the image, unlike
generating corrected images using GAN or encoder-decoder architectures, which are more difficult
to train and prone to instability such as mode collapse [8,9]. While our method requires multiple
networks to correct an image, this approach results in a smaller computational footprint because
each CNN has a fewer number of hidden layers compared to other architectures [10–12] involving
deep networks.

Figure 1. Given a distorted input image, three convolutional neural networks are used for producing
M̂ transformation matrix that caused the distortion (M as ground-truth matrix). The distorted image is
transformed to its corrected image by applying M̂−1.

Figure 2. Distortion types that can be corrected by our proposed network. (A): rotation. (B): Scaling.
(C): Affine. (D): Projective. These are planar transformations identified by Hartley and Zisserman [13].
One or more distortion types may be present in a distorted image.

We present the following contributions of this study:

• Our network architecture corrects perspective distortion and produces visually better images
than other state-of-the-art methods. In terms of pixel-wise reconstruction error, our method
outperforms other works.

• Our method, to the best of our knowledge, is the first attempt to estimate the transformation
matrix for correcting an image rather than using a reconstruction-based approach. Our method
is straightforward and the network design is simpler compared to other works that mainly rely
on deep generative models such as GANs or encoder-decoder networks, which are notoriously
difficult to train and prone to instability.
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• Our method also recovers the original scale and proportion of the image. This is not observed
in other works. Recovering the scale and proportion is beneficial for applications that perform
distance measurements.

2. Related Work

2.1. Model-Based Techniques

Some works have been proposed where images are corrected, assuming distortion parameters are
provided or available [14,15]. However, there are cases wherein information about the camera lens or
acquisition system is unavailable, which inspired some studies on auto-calibration methods where
distortion parameters are estimated [16–19]. Fitzgibbon proposed a single-image automatic distortion
correction using a division model to approximate the radial distortion curve [20]. A lightweight
auto-rectification method was proposed by Chaudhury et al. [21] where perspective distortions are
corrected by performing a RANSAC-based vanishing point detector that restores parallelism of lines
in the image. Similarly, the framework proposed by Santana-Cedrés et al. [22] uses a voting scheme
for identifying vanishing points and performs perspective correction by simulating camera motion.
More recently, an automatic perspective distortion correction for wide-angle portrait images captured
on mobile devices was proposed, where a novel face objective term was introduced to properly correct
face distortions and background distortions separately [23]. Some works use multiple images with
different orientations to properly estimate distortion parameters [24–26]. To some extent, methods that
combine multiple images for enhancement require some perspective transformation technique [27–30].
The same technique is implemented for performing image stitching [31–35].

2.2. Methods Using Low-Level Features

Using low-level features, such as edges, lines and vanishing points are explored for perspective
distortion correction [20–22,36–39]. Wang et al. [18] used an improved Hough Transform for distortion
correction while Bukhari and Dailey [19] proposed a sampling method that robustly chooses the circular
arcs and determines distortion parameters that are insensitive to outliers. Aside from using low-level
features as parameters for distortion correction, assumptions are sometimes included in other studies.
For example, images with man-made structures are assumed to appear straight [40]. Lee et al. [41]
proposed a set of criteria based on such assumption for upright adjustment of photographs using
an optimization-based calibration method. However, methods that rely on low-level features and
assumptions do not work well with a variety of images and only work on specialized scenarios. Results
from our experiments show that the proposed method of Chaudhury et al. [21] does not correctly
rectify our distorted images.

2.3. Learning-Based Methods

Blind distortion correction is an ill-posed problem. Therefore, learning-based methods using only
a single distorted image are being pursued [10–12,42–46]. Deep learning for correcting documents were
proposed recently [12,44–46] which implements convolutional neural networks, encoder-decoders,
and U-net-based architectures [47]. Work on correcting portrait images used an encoder-decoder
architecture [10]. The encoder-decoder architecture proposed by Li et al. [11] aims to correct real-world
images by predicting the distortion flow and further refining the correction by iterative resampling,
which is a predecessor of our work. Instead of using a multi-model network for predicting the
distortion flow, we used multiple convolutional neural networks (CNN) that run in parallel to predict
the transformation matrix. Our network is trained purely for correcting perspective distortions, unlike
the work of Li et al. [11] that correct a wide range of distortion types, such as barrel and pincushion
distortions. Furthermore, our results outperforms the method of Li et al. [11], which occasionally
generates incorrect rectification of images even on the dataset they have used for training (Places-365
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dataset [48]). To some extent, our network properly generalizes to this dataset despite being trained on
KITTI [49] images.

3. Empirical Analysis on the Transformation Matrix

The motivation behind having networks train in parallel to predict a certain element in M is
discussed here. An image may be distorted under perspective imaging. A transformation mapping M
is given by [13]:

T(~x) = M~x (1)

where M is an m× n transformation matrix, where ~x is a vector with n entries.
The goal of all the networks is to learn a transformation matrix , given an H×W distorted image Ĭ.

Ĭ is generated from H×W original image I by creating a random 3× 3 transformation M, then applying
the said transformation for each (x, y) pixel in I. Given M, (x̆, y̆) in Ĭ can be represented as:x̆

y̆
z̆

 =

m1,1 m1,2 m1,3

m2,1 m2,2 m2,3

m3,1 m3,2 m3,3


x

y
1

 (2)

Since M is homogeneous, T(~x) must be normalized to obtain the inhomogeneous equation [50]:

x̆ =
m1,1x + m1,2y + m1,3

m3,1x + m3,2y + m3,3
, y̆ =

m2,1x + m2,2y + m2,3

m3,1x + m3,2y + m3,3
(3)

Given a single-entry matrix M (m3,3 = 1), and an input image I, we performed a frame-by-frame
analysis on how mi,j ∈ M (1 ≤ i, j ≤ 3) transforms I. In other words, we wanted to visualize the
effect of each element in M and how these elements contribute to the overall distortion applied to
I. The frames for mi,j ∈ M are generated by repeatedly incrementing its element. For example,
the frames for m1,1 are generated by repeatedly adding ∆ to m1,1, where ∆ is chosen arbitrarily to
produce observable frame animations. The origin point for all the frame animations generated is on
the top left. Results are visualized in Figure 3.

Based on this experiment, we have identified the element pairs responsible for certain
transformation behaviors (e.g., rotating or shearing an image) that a certain network can be trained to
estimate. The elements are paired as follows:

• Small changes in m3,1 result in a sideways rotation along the Y axis. Small changes in m3,2 result
in a shearing operation, where the image’s bottom left and bottom right anchor points move
sideways and upwards. Equation (3) shows that increasing m3,1 and m3,2 causes the x̆ and y̆ to
shrink. This is represented as an element pair, {m3,1, m3,2}.

• Based in Equation (3), m1,1, m2,2, m3,3 deal with the scale of the image. The matrix entries,
m1,1 and m2,2, deal with the width and height of the image respectively. Since m3,3 is part of
the denominator, it changes both the width and height of the image. We do not need to use
m3,3 as input when training our network because m1,1 and m2,2 can be inferred instead. This is
represented as an element pair, {m1,1, m2,2}.

• Since m1,2 is multiplied by y and m2,1 is multiplied by x in Equation (3), this creates a shearing
effect along x̆ and y̆ respectively. This is represented as an element pair, {m1,2, m2,1}.

• Since no other term is multiplied with m1,3 and m2,3 in Equation (3), increasing these entries
results in pixel-wise displacements along x and y respectively. These are not considered as input
for the network as they are typically not observed in distorted images.
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Figure 3. Effects of each element in M to an input image shown frame by frame. The frames for
each element in M are generated by repeatedly increasing its element values. For example, the frame
animations for m1,1 are generated by as m1,1 increases from 0 to 1 while all other entries in M are made
constant. The same procedure is performed for creating the animations for the other elements.

Based on this experiment, m1,3, m2,3 and m3,3 can be excluded in training. Thus, Equation (2) can
be simplified into the following: x̆

y̆
z̆

 =

m1,1 m1,2 0.0
m2,1 m2,2 0.0
m3,1 m3,2 1.0


x

y
1

 (4)

The element pairs are used for training the network, which also form the elements in M (seen in
Equation (4)). Because M is invertible, we used M as ground-truth and M−1 for removing distortion
from image Ĭ.

4. Synthetic Distortion Dataset: dKITTI

Similar to our predecessor [11] where a synthetic distortion dataset is used, we used the KITTI
dataset [49] for populating a set of distorted images and their corresponding M that serves as the
ground-truth transformation matrix. A distorted image in the dataset has a randomly generated M
with respect to Equation (4). These images and M pairings form the distortion dataset, dKITTI.

Figure 4 illustrates how we generated dKITTI for training. For each KITTI image, we generated a
random M for distorting the image and automated the region selection to produce the final distorted
image. The range of transformation matrix values (Table 1) used for generating dKITTI images are
uniformly sampled. The region selection is performed by fitting a maximum bounding box (Figure 4)
which is performed as follows:

1. Declare a bounding box B with a size of (Bw, Bh) in terms of width and height.
(Bw, Bh) = (Ww, Wh) where W refers to the distorted image generated.

2. Iteratively decrease (Bw, Bh) until the number of zero pixels, P, becomes 0. B becomes the selected
cropped image Ĭ.

3. Resize Ĭ by bilinear interpolation such that ( Ĭw, Ĭh) = (Ow, Oh) where O is the original image.
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Figure 4. Dataset generation process. The cropped image Ĭ is reconstructed based from its estimated
transformation matrix inverse. Yellow bounding box shows the region of Ĭ in the distorted image.
The corrected image, I, serves as the ground-truth.

Table 1. Range of transformation matrix values used for generating distorted images. The dataset
follows a uniform distribution.

Low High

m1,1 and m2,2 8.0× 10−1 12.0× 10−1

m1,2 and m2,1 −9.0× 10−3 9.0× 10−3

m3,1 and m3,2 −7.5× 10−4 7.5× 10−4

However, resizing the distorted image, Ĭ, implies that the 3D positioning of the image has changed
and therefore, M should be updated. Figure 5 illustrates this observation. m1,1 and m2,2 deal with the
width and height of the image (seen in Figure 3). These elements are updated as follows:

m1,1 =
Bw

Ww
, m2,2 =

Bh
Wh

(5)

To avoid producing synthetic distorted images that are too extreme or far-fetched from real-world
perspective distortions, we further refined our dataset generation by checking if the edge distribution
of the distorted and original images are about the same. More specifically, all distorted and original
images go through an edge similarity check algorithm (using Sobel operator [51]), where the difference
of the total number of edge pixels between the distorted and original images should be less than 25%.
This ensures that the loss of overall content from the original image is minimized. Distorted images
are regenerated if it does not satisfy this threshold. Figure A3 shows some image samples used for
training as well as those that were discarded.

Figure 5. Image projected in 3D space with respect to the camera source. Resizing a region from the
original image implies that the camera source moved forward along the Z axis.
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5. Proposed Network

Our proposed network consists of three sub-networks which are trained to produce a certain
element pair in M̂, which forms the transformation matrix that caused the distortion in the input
image. The corrected image is obtained by transforming the distorted input image using M̂−1.
More specifically, all three sub-networks require Ĭ, a cropped distorted image as input (Figure 4),
where the goal is to produce {m̂3,1, m̂3,2}, {m̂1,1, m̂2,2} and {m̂1,2, m̂2,1} and minimize the difference
to {m3,1, m3,2}, {m1,1, m2,2} and {m1,2, m2,1} during training. The basis of the element pairs for each
network are discussed in Section 3. We refer to these networks as N({m3,1, m3,2}), N({m1,1, m2,2}) and
N({m1,2, m2,1}) respectively. This makes training faster and yields better results than having only one
network in producing M̂. We justify this claim in Section 6.1.

5.1. Parallel CNN Model

The architectural design of our network is shown in Figure 6. There are three instances of this
that attempt to predict element pairs in M̂, where each network is trained in parallel. Similarly,
the three networks are used in parallel for inference. The CNN accepts an input image of size
1442× 575. The input undergoes the pre-trained DenseNet [52] layers, followed by 9 convolutional
layers. Each layer uses max-pooling operations and ReLU activations. The last convolutional layer is
connected to a fully connected layer which outputs {m̂i,j, m̂k,l} ∈ M̂, i, j, k, l = 1, ..., 3.

Figure 6. Architectural design of our network. There are three network instances that estimates an
element in the transformation matrix M̂.

5.2. Training Details

Each network N({m3,1, m3,2}), N({m1,1, m2,2}) and N({m1,2, m2,1}) is trained to minimize the
mean square error (MSE) function of its assigned element pair in M̂ with respect to element pairs in
ground-truth M. The total loss function L is of the form:

L = L1 + L2 + L3 (6)

where L1, L2, L3 are defined as follows:
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L1 =
α

n

[
n

∑
i=1

({m1,2, m2,1} − {m̂1,2, m̂2,1})2

]
(7)

L2 =
β

n

[
n

∑
i=1

({m1,1, m2,2} − {m̂1,1, m̂2,2})2

]
(8)

L3 =
γ

n

[
n

∑
i=1
{m3,1, m3,2} − {m̂3,1, m̂3,2})2

]
(9)

where n is the number of observed input. The penalty terms α, β, γ, are added to corresponding
element pairs based on observed sensitivity conducted from our experiment discussed in Section 3.
The following values were used for training: α = 10.0, β = 1.0, γ = 1.0 × 106. The penalty
term, γ, is very large because minuscule differences between {m3,1, m3,2} and {m̂3,1, m̂3,2}
(≥ 1.0 ×10−6 difference) have a noticeable misalignment between ground-truth image I and generated
image Î.

We implemented the network and performed experiments using PyTorch. The three parallel
networks are optimized using ADAM [53] with learning rates set to 5.0× 10−4 and batch size of 8.

We trained the networks using an NVIDIA RTX 2080Ti GPU and the networks converge at around
20 epochs. We observed that during training, while some networks converge faster than the others,
there were no overfitting incidents. Hence, we let all networks train until all networks have converged
to an acceptable loss.

6. Evaluation

We evaluated our network architecture using the dKITTI dataset. The network is trained
with 95,330 distorted images, while we performed an evaluation on the validation set containing
5018 images. The images are 1442× 575 pixels in size.

We measured the following in terms of transformation matrix error: absolute relative and square
relative error and root means squared error (RMSE). The same metrics are used for measuring the
pixel-wise error, while structural image similarity (SSIM) [54] is used for checking image reconstruction
quality. We also measured the failure rate which is the percentage of images in the validation set that
are not properly corrected, such as in the case of homography estimation [55] where it fails to produce
visually better images than the input. Performance results are shown in Table 2 and the best results
are shown in Figure 7. Figure 8 shows the results of manually picked images that have observable
distortion and only depict a small region from the original image. Additional image results are shown
in Figures A1 and A2 in the Appendix A.

We compared our method with the following: dataset transformation matrix mean, which is
used as a baseline, homography estimation method [55], the methods proposed by Li et al. [11],
and Chaudhury et al. [21]. Homography estimation is computed by estimating M̂−1 for a given
distorted image Ĭ (Equation (2)) such that the back-projection error to the corrected image I is
minimized. Homography estimation, however, is not a blind distortion correction technique but
this is included for comparison. We used ORB detector [56] for detecting feature points for Ĭ and I
then used RANSAC [57] for minimizing the error. We set a threshold for considering matches only
within a certain Euclidean distance, to minimize outliers. For the work of Li et al. [11], we used their
pre-trained model, specifically their multi-model distortion network with resampling for generating
the corrected image. For the work of Chaudhury et al. [21], we used their independent auto-rectifier
algorithm with default parameters.
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Figure 7. Results using unseen data from KITTI. (A): Distorted input images. (B): Corrected image
using homography estimation (C): Corrected image using the technique of Chaudhury et al. [21].
(D): Corrected image using the technique of Li et al. [11]. (E): Corrected image using our method.
(F): Ground-truth. Visually comparing the images, our network learned how to correct an image close
to the ground-truth compared to other works.

Figure 8. More results using unseen data from KITTI. (A): Distorted input images. (B): Corrected
image using homography estimation (C): Corrected image using the technique of Chaudhury et al. [21].
(D): Corrected image using the technique of Li et al. [11]. (E): Corrected image using our method.
(F): Ground-truth. Our network can correct an extremely distorted image.

As shown in Table 2, our network architecture outperforms the other methods. To validate the
robustness of our network, we input images with extreme distortions, by sampling images with
minimum and maximum transformation matrix values in Table 1. Figure 9 show that our network
corrects images with extreme distortions and performs better than other methods.

Table 2. Accuracy metrics. Best performance in bold.

Method Transformation Matrix Error Pixel-Wise Error/Accuracy ↓ Lower Is Better
Abs. Rel. ↓ Sq. Rel. ↓ RMSE ↓ Sq.Rel ↓ RMSE ↓ SSIM ↑ Failure Rate ↓

Dataset mean 1.92× 10−1 1.52× 10−1 8.60× 10−4 0.2665 0.6895 0.5294 0.00% ↑ Higher is better
Homography estimation 2.4457 1.33× 101 3.1937 0.1838 0.4930 0.6781 13.90%
Li et al. [11] N/A N/A N/A 2.32× 104 0.9963 0.0253 0.00%
Chaudhury et al. [21] N/A N/A N/A 4.77× 104 0.9975 0.0148 0.00%
Ours 7.00× 10−2 3.18× 10−3 5.64× 10−2 0.0361 0.2520 0.7981 0.00%
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Since the nature of homography estimation involves detecting feature points in the images,
there are some occasions wherein there are very few feature points available (incorrect warping
observed in Figure 9). Hence, the transformation matrix cannot be inferred properly on some images.
In effect, Homography estimation cannot be performed on 13.90% of images in the validation set
(specified in Table 2). Our method guarantees that M̂ can be inferred on all images in the validation set.

The distortion parameters produced by the methods of Li et al. [11] and Chaudhury et al. [21]
have some limitations and can be further improved as follows:

• Both methods do not consider the scaling of images as a possible factor in perspective distortion,
unlike our method, as discussed in Section 3.

• Images with low texture and those with shearing, as seen from examples in Figure 8 and 9 affect
the correction. This is more observed in the method of Chaudhury et al. [21], which can only
handle limited distortions on images. Our method is observed to be robust from these limitations.

• Some images are misclassified as a different distortion type using the method of Li et al. [11].
For example in Figure 8, the third image of row A is misclassified as a barrel or pincushion
distortion which resulted in a different corrected image. Our method covers more cases of
perspective distortions. As seen in our results, our method consistently produces corrected images.

Figure 9. Our network is robust and can still produce a correct image even on extremely distorted
images such as when majority of pixels are out of bounds. (A): Distorted input images. (B): Corrected
image using homography estimation (C): Corrected image using the technique of Chaudhury et al. [21].
(D): Corrected image using the technique of Li et al. [11]. (E): Corrected image using our method.
(F): Ground-truth.

6.1. Experiment on Network Variants

We conducted an experiment to validate the effectiveness of parallel CNNs for perspective
distortion correction. The following network variants are described in Table 3. Model A uses DensetNet
as the pretrained layer proposed in Figure 6. Model B uses pre-trained ResNet-161 [58] layers instead
of DenseNet layers. Model C does not use any pre-trained layer. Model D is similar to Model A
except only one instance is trained. The fully connected layer outputs {m̂1,1, m̂1,2, m̂2,1, m̂2,2, m̂3,1, m̂3,2}.
The results are summarized in Table 4.

Model C appears to have the lowest transformation matrix error among other variants but the
lowest pixel-wise error and highest SSIM accuracy of the corrected images were produced by Model
A. The results also show that predicting grouped element pairs and training three network instances
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in parallel are better than using a single network instance. Hence, Model A is the primary network
architecture used for correcting distorted images.

Table 3. Network variants experimented.

Pre-Trained Layer Instances Parallel?

Model A DenseNet

3 YesModel B ResNet-161

Model C None
Model D DenseNet 1 No

Table 4. Accuracy metrics of network variants. Best performance in bold.

Model Transformation Matrix Error Model Pixel-Wise Error/Accuracy ↓ Lower Is Better
Abs. Rel. ↓ Sq. Rel. ↓ RMSE ↓ Sq.Rel ↓ RMSE ↓ SSIM ↑

Model A 7.00× 10−2 3.18× 10−3 5.54× 10−2 Model A 0.0361 0.2520 0.7981 ↑ Higher is better
Model B 8.15× 10−2 4.34× 10−3 6.59× 10−2 Model B 0.0688 0.3580 0.7562
Model C 6.89× 10−2 3.13× 10−3 5.25× 10−1 Model C 0.0397 0.2707 0.7956
Model D 8.19× 10−2 4.56× 10−3 6.75× 10−2 Model D 0.0577 0.3270 0.7803

6.2. Closeness of Estimations to Ground-Truth

We randomly selected 500 images each from the training and validation sets, then validated
the predicted M̂ and compared it against the ground-truth M. The norm of M̂ and M are plotted in
Figure 10. Our network predicts shortly by a mean margin of 0.0239 in terms of norm value from the
ground-truth. This difference is very small and visually negligible as observed from the image results.
The scatter plot also shows that our prediction distribution is almost the same as the ground-truth
distribution of the training and test sets.

Figure 10. Scatter plot of norm predictions and ground-truth. X axis refers to a certain image number.
Y axis is the norm value. The norm of predicted matrices are very close to the training and test set
ground-truth matrices.

We validated if our network can correct images with different M1,1 and M2,2 values. As stated
in Section 3, these elements deal with scaling of images and should be considered in modelling
perspective distortion. We generated 276 distorted images from KITTI where only M1,1 and M2,2 are
uniformly randomized and then used our proposed network for predicting M̂. Table 5 summarizes
the transformation matrix error and pixel-wise error metrics. The best image results are shown in
Figure 11. Based on the results, our network can recover the original scale of the image which cannot
be performed by other methods.
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Table 5. Accuracy metrics of the network’s scaling prediction using images with scaling distortion.
Our network recovers the scale of images properly. Best performance in bold.

Method Transformation Matrix Error Pixel-Wise Error/Accuracy
Abs. Rel. ↓ Sq. Rel. ↓ RMSE ↓ Sq.Rel ↓ RMSE ↓ SSIM ↓

Dataset mean 1.93× 10−1 2.54× 10−2 1.60× 10−1 0.1054 0.5978 0.4886 ↓ Lower is better
Homography estimation 1.2790 5.4121 2.3264 0.0968 0.4745 0.4978
Li et al. [11] N/A N/A N/A 1.72× 104 0.9969 0.0131 ↑ Higher is better
Chaudhury et al. [21] N/A N/A N/A 5.42× 104 0.9982 0.0051
Our method 2.59× 10−1 5.43× 10−2 2.33× 10−1 0.1122 0.6339 0.6574

Figure 11. Corrected images with scaling distortion. (A): Distorted input images. (B): Corrected image
using homography estimation (C): Corrected image using the technique of Chaudhury et al. [21].
(D): Corrected image using the technique of Li et al. [11]. (E): Corrected image using our method.
(F): Ground-truth. Our network can resize the image back to their original scale.

6.3. Activation Visualization

We analyzed how our network behaves by visualizing the gradient-weighted activation maps of
the convolutional layers, using the technique of Selvaraju et al. [59]. Figure 12 illustrates the feature
maps. As observed in the visualizations, our network tends to extract edges, outlines, then certain
regions of the images. The first layer gravitates towards the edges, lines, and contours. For each
succeeding layer, the low-level features are being grouped where all edges, lines, and contours appear
to be grouped on the 4th layer. Succeeding layers tend to activate on specific regions of the images
where the last layer appears to focus on the overall orientation of the image.
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Figure 12. Gradient-weight activation maps for each convolutional layer. Each row represents the
networks N({m3,1, m3,2}), N({m1,1, m2,2}) and N({m1,2, m2,1}) respectively. The networks tend to lean
towards activation of edges and contours on the first four layers while the remaining layers focus on
specific regions. Thumbnails encircled have their zoomed version shown to highlight the activations
on earlier layers.

6.4. Model Generalization

We experimented with our network on unseen data by using test images from Places-205 [48]
dataset. A total of 612 images from Places-205 were randomly selected and distorted, where the
majority of images have little to no presence of cars and roads. Thus, the images are entirely on a
different domain from the KITTI dataset. Table 6 shows the accuracy metrics. Figure 13 illustrates
the best results. Notice that our network can still recover the corrected image properly as compared
to other methods. While the distortion parameters are similar but the scene context is different,
our network can still infer the transformation matrix to correct the image. We speculate that our
network is invariant to scene compositions because the activation maps (discussed in Section 6.3)
focuses more on edges and lines in the image.

Table 6. Accuracy metrics using Places205 dataset [48]. Best performance in bold. Our network was
not trained using images from Places205, but still outperforms other methods.

Method Transformation Matrix Error Pixel-Wise Error/Accuracy
Abs. Rel. ↓ Sq. Rel. ↓ RMSE ↓ Sq.Rel ↓ RMSE ↓ SSIM ↑

Dataset mean 2.16× 10−1 2.73× 10−2 1.65× 10−1 0.1433 0.5641 0.5805 ↓ Lower is better
Homography estimation 2.6514 1.44× 101 3.7950 0.1522 0.5899 0.6178
Li et al. [11] N/A N/A N/A 2.19× 104 0.9956 0.0169 ↑Higher is better
Chaudhury et al. [21] N/A N/A N/A 4.35× 104 0.9967 0.0096
Our method 3.00× 10−1 6.23× 10−2 2.50× 10−1 0.1355 0.5851 0.6137
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Figure 13. Results using unseen images from Places205 dataset [48]. (A): Distorted input images.
(B): Corrected image using homography estimation (C): Corrected image using the technique of
Chaudhury et al. [21]. (D): Corrected image using the technique of Li et al. [11]. (E): Corrected image
using our method. (F): Ground-truth.

6.5. Limitations

We observed that our network could not properly correct outdoor images with repeating textures
as well as indoor scenes with texts or cluttered objects. These examples are shown in Figure 14.
Since our network does not recognize specific objects and semantic information in particular, then the
network cannot correct images with a dense amount of objects and repetitive textures such as rocks.
The network was not trained with any indoor scenes and thus, produces incorrect distortion parameters.
We believe that the straightforward solution to this is to retrain the network with more variety of
images or perform domain adaptation.

We also attempted to investigate the limits of our trained network, using panoramic images
from the Internet. For an image to be compatible with our network, we either resized the image to
1442× 575, assuming the original aspect ratio is preserved, or cropped an area of similar size in the
image, with the center as the origin. Results are shown in Figure 15. Panoramic images will most often
involve a combination of different distortions, some are higher-order distortions, such as barrel or
pincushion distortions. However, results visually show that our network has attempted to correct the
images’ orientation and reduced the stretching in some areas as compared to other methods.
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Figure 14. Limitations of our method on unseen images. (A): Distorted input images. (B): Corrected
image using homography estimation (C): Corrected image using the technique of Chaudhury et al. [21].
(D): Corrected image using the technique of Li et al. [11]. (E): Corrected image using our method.
(F): Ground-truth.

Figure 15. Results of distortion correction using public panoramic images from the Internet.
(A): Panoramic images. (B): Corrected image using the technique of Chaudhury et al. [21].
(C): Corrected image using the technique of Li et al. [11]. (D): Corrected image using our method.
Panoramic images often have a combination of different types of distortions. Our network still attempts
to correct the images’ orientation and reduced stretching on some areas. Rightmost image taken by
David Iliff (2005).
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7. Conclusions

We proposed a blind first-order perspective distortion correction method by using three
convolutional neural networks in inferring the transformation matrix for correcting an image where
these networks are trained and used in parallel. We discovered that elements in the transformation
matrix can be grouped because they perform a specific transformation to the image such as scaling or
skewing, which is the rationale behind our approach and design of the network. Our proposed method
shows promising results, as shown by outperforming other state-of-the-art methods. Our network
can generalize properly on a different domain as well as recover the intended scale and proportion of
the image, which could be used for images that appear stretched, making objects in the image appear
close to their original scales.

Our network cannot correct images with repeating textures as well as indoor scenes with texts
or cluttered objects. We speculate that this could be solved by adding more training samples that
cover such cases. We plan to explore how images with higher-order distortions can be corrected,
without relying on generative or encoder-decoder architectures which to some extent, was already
performed by Li et al. [11] for reconstructing the intermediate flow representation of the distorted
image. It would be interesting to use the same strategy (Section 3) that we proposed.
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Appendix A

Additional results are shown in the next figures. The source code for this work is available at:
https://github.com/NeilDG/NeuralNets-ImageCorrection. The pre-trained model can be requested
by emailing the authors.

Figure A1. Additional results using unseen data from KITTI. (A): Distorted input images. (B): Corrected
image using homography estimation (C): Corrected image using the technique of Chaudhury et al. [21].
(D): Corrected image using the technique of Li et al. [11]. (E): Corrected image using our method.
(F): Ground-truth.

https://github.com/NeilDG/NeuralNets-ImageCorrection
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Figure A2. Additional results using unseen data from KITTI. (A): Distorted input images. (B): Corrected
image using homography estimation (C): Corrected image using the technique of Chaudhury et al. [21].
(D): Corrected image using the technique of Li et al. [11]. (E): Corrected image using our method.
(F): Ground-truth.

Figure A3. Preview of the dKITTI dataset. (A): Some examples of distorted images used for training.
(B): Some examples of discarded images. Generated distorted images are discarded and regenerated if
most of the content from the original image is lost. See Section 4 for details.
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